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Abstract

End-to-end deep neural networks have achieved remarkable success across various domains
but are often criticized for their lack of interpretability. While post hoc explanation methods
attempt to address this issue, they often fail to accurately represent these black-box models,
resulting in misleading or incomplete explanations. To overcome these challenges, we propose
an inherently transparent model architecture called Neural Probabilistic Circuits (NPCs), which
enable compositional and interpretable predictions through logical reasoning. In particular, an
NPC consists of two modules: an attribute recognition model, which predicts probabilities for
various attributes, and a task predictor built on a probabilistic circuit, which enables logical
reasoning over recognized attributes to make class predictions. To train NPCs, we introduce a
three-stage training algorithm comprising attribute recognition, circuit construction, and joint
optimization. Moreover, we theoretically demonstrate that an NPC’s error is upper-bounded by
a linear combination of the errors from its modules. To further demonstrate the interpretability
of NPC, we provide both the most probable explanations and the counterfactual explanations.
Empirical results on four benchmark datasets show that NPCs strike a balance between in-
terpretability and performance, achieving results competitive even with those of end-to-end
black-box models while providing enhanced interpretability.

1 Introduction
End-to-end deep neural networks (DNNs) [Krizhevsky et al., 2012, He et al., 2016, Vaswani et al.,
2017, Devlin et al., 2019] have demonstrated remarkable success across various domains [Hinton
et al., 2012, Sutskever et al., 2014, Long et al., 2015]. However, many of them are black-box
models containing complex operators, making it hard to interpret and understand how a decision
was made. Although many efforts [Ribeiro et al., 2016, Lundberg and Lee, 2017, Selvaraju
et al., 2017] have been made to explain a model’s decision in a post hoc manner, Alvarez-Melis
and Jaakkola [2018], Laugel et al. [2019], Slack et al. [2020], Rudin [2019] show that these
explanations are oftentimes not reliable as the explanation model might loosely approximate
the underlying model. For example, the explanation model exhibits similar performance to
the black-box model but yet relies on entirely different features. Such discrepancy between
the explanation model and the black-box model could lead to misleading explanations, e.g.,
attributing the decision to irrelevant features or missing out important features. Misleading
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explanations are particularly concerning in high-stake applications such as medical analysis [Hou
et al., 2024, Liu et al., 2023] and legal justice [Richmond et al., 2024, Deeks, 2019]. Rather than
introducing post hoc explanations to explain a black-box model, Rudin [2019] argues that one
should create an interpretable model in the first place where each component is designed with
a distinct purpose, facilitating an interpretable prediction.

Concept bottleneck models (CBMs) [Koh et al., 2020] aim to enhance interpretability by
introducing high-level, human-understandable concepts, such as “red color” and “round shape”, as
an intermediate bottleneck, which decomposes a model into two modules: a concept recognition
model and a task predictor. The neural-network-based concept recognition model maps the
input image to probabilities associated with various concepts. Using these probabilities, the task
predictor, typically a linear predictor, produces the probabilities for the various classes. Since
the final prediction (i.e., the class with the highest probability) can be interpreted in terms
of these concepts, the model’s decision-making process becomes more intuitive for humans to
understand. To improve performance on downstream tasks, methods like CEM [Zarlenga et al.,
2022], ProbCBM [Kim et al., 2023], and others [Yeh et al., 2020, Kazhdan et al., 2020] change
the outputs of the concept recognition model from concept probabilities to concept embeddings.
While boosting task performance, such approaches significantly compromise interpretability
since the dimensions within concept embeddings lack semantic meanings. On the other hand, to
further improve interpretability, some approaches [Barbiero et al., 2023, Rodríguez et al., 2024,
Ciravegna et al., 2023] propose architectures for the task predictor that incorporate logical
rules, allowing task predictions to be explicitly explained through these rules. However, these
logical rules are usually learned from data rather than being predefined by humans, limiting our
ability to integrate prior domain knowledge into the model. Additionally, there is currently no
theoretical guarantee regarding the performance of the overall model, obscuring the relationship
between overall performance and that of the concept recognition model or the task predictor.

To address these challenges, we propose a novel model architecture called Neural Probabilis-
tic Circuits (NPCs), which enable compositional and interpretable predictions through logical
reasoning. An NPC comprises two modules: an attribute recognition model and a task predic-
tor. Unlike existing approaches that primarily focus on numerous binary concepts (e.g., “red
color”, “yellow color”), we introduce a higher-level categorical characteristic called attributes,
which describe the types of concepts (e.g., “color”). This approach reduces the need for addi-
tional concept selection or pruning to improve model efficiency [Ciravegna et al., 2023, Barbiero
et al., 2022, Zarlenga et al., 2023], while also achieving better performance in concept recog-
nition. Given an input image, the neural-network-based attribute recognition model produces
probability vectors for various attributes, with each vector representing the likelihood of various
values for the corresponding attribute. These probability vectors serve as inputs to the task
predictor, which is implemented using a probabilistic circuit. Probabilistic circuits [Poon and
Domingos, 2011, Zhao et al., 2016b, 2015b, Choi et al., 2020], a type of graphical models [Koller
and Friedman, 2009], aim to learn the joint distribution over input variables, in our case, at-
tribute variables and the class variable. During learning, probabilistic circuits embed within
their structures and parameters either implicit logical rules learned from data or explicit logical
rules predefined by humans. The circuits enable tractable probabilistic reasoning tasks such as
joint, marginal, and conditional inferences, thereby revealing relations among the attributes and
classes. By leveraging these relations, NPCs can reason over outputs from the attribute recog-
nition model to infer the most probable class. Specifically, the prediction score for a given class
is the sum of the likelihood of each combination of attribute values weighted by their relevance
to the class. As usual, the final prediction corresponds to the class with the highest score.

Given the compositional nature of NPCs, we propose a three-stage training algorithm.
Specifically, the whole procedure involves the following stages: 1) Attribute recognition: We be-
gin by training the attribute recognition model within a multi-task learning framework [Caruana,
1997, Ruder, 2017]. 2) Circuit construction: Next, we construct the circuit using two distinct
approaches: i) Data-driven approach learns the circuit’s structure and optimizes its parame-
ters based on data, allowing the underlying logical rules to be embedded within the circuit. ii)
Knowledge-injected approach manually designs the circuit’s structure and assigns its parameters
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to ensure that human-predefined logical rules are explicitly encoded within the circuit. 3) Joint
optimization: Finally, the two modules are jointly optimized in an end-to-end manner to further
enhance the overall model’s performance on downstream tasks.

To provide theoretical guarantees regarding the performance of the overall model, we demon-
strate that, due to its compositional nature and the use of probabilistic circuits, NPCs exhibit
a compositional error bound—the error of the overall model is upper-bounded by a linear com-
bination of the errors from the various modules.

In addition, we provide various types of explanations to make it easier for humans to un-
derstand NPC’s predictions: 1) Most Probable Explanation (MPE) identifies the combination
of attribute values that contributes most significantly to the predicted class. 2) Counterfactual
Explanation (CE) answers the question: Would the model have made the correct prediction had
the likelihoods of certain attribute values been adjusted?

Empirical results on four image classification datasets demonstrate NPC’s ability to strike an
impressive balance between interpretability and performance on downstream tasks. In particu-
lar, NPC outperforms three representative concept-based models and delivers results competitive
even with those of an end-to-end deep neural network. Additionally, we perform extensive ab-
lation studies to investigate the advantages of integrating attributes over concepts, along with
the impacts of attribute selections, predictor design approaches, and joint optimization.

Our main contributions are as follows,

1. We introduce Neural Probabilistic Circuits (NPCs), a novel model architecture that com-
bines a neural-network-based attribute recognition model and a probabilistic-circuit-based
task predictor, enabling compositional and interpretable predictions through logical rea-
soning.

2. We develop a three-stage training algorithm for NPCs, consisting of 1) attribute recognition
through multi-task learning, 2) circuit construction via both data-driven and knowledge-
injected approaches, and 3) end-to-end joint optimization.

3. To the best of our knowledge, we are the first to provide a theoretical guarantee on the
performance of the compositional bottleneck models, which shows that NPC ’s error can
be upper-bounded by a linear combination of the errors from its modules.

4. We provide various types of explanations to facilitate human understanding of NPCs’
predictions, including most probable explanations and counterfactual explanations.

5. We empirically show that NPC demonstrates competitive performance in image classifica-
tion tasks while providing enhanced interpretability.

2 Preliminaries
Probabilistic circuits are a class of graphical models that is used to express a joint distribution
over a set of random variables Z1:N . A probabilistic circuit fS (henceforth simply referred to as
a circuit) consists of a rooted directed acyclic graph where leaf nodes are univariate indicators
of categorical variables1 (i.e., I(Zi = zi), zi ∈ Zi, i ∈ [N ]) and internal nodes consist of sum
nodes and product nodes. Each sum node computes a weighted sum of its children, and each
product node computes a product of its children. In an unnormalized circuit, the root node
outputs the unnormalized joint probability over variables. Any unnormalized circuit can be
transformed into an equivalent, normalized circuit via weight updating Peharz et al. [2015],
Zhao et al. [2015a]. Hence, without loss of generality, we always assume that fS is normalized;
thus, fS(z1:N ) = Pr(Z1:N = z1:N ). Readers are referred to Sánchez-Cauce et al. [2021] for more
details on circuits.

In circuits, the scope of a node is defined as the set of variables that have indicators among
the node’s descendants, which can be computed recursively—if v is a leaf node, say, an indi-
cator over Zi, then scope(v) = {Zi}; otherwise, scope(v) = ∪ṽ∈children(v) scope(ṽ). A circuit

1We mainly focus on probabilistic circuits over categorical random variables. An extension to the continuous ones
is standard.
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Figure 1: Model architecture of an NPC, consisting of an attribute recognition model and
a task predictor. The attribute recognition model is a neural network f(X; θ) which takes an
image X as input and outputs K probability vectors {Prθ(Ak | X)}Kk=1. The task predictor
is a probabilistic circuit fS(Y,A1:K ;w) taking an instance of attributes as input and provid-
ing the conditional probability Prw(Y | A1:K). By leveraging these relations between classes
and attributes alongside the probability distributions of various attributes, NPC produces the
probability vector Prθ,w(Y | X).

is smooth iff each sum node has children with identical scope. A circuit is decomposable iff
each product node has children with disjoint scopes. If a circuit is smooth and decomposable,
then any marginal probability can be computed by setting the leaf nodes corresponding to the
marginalized variables to 1. Consequently, inferences are efficient in a circuit as any joint,
marginal, or conditional inference can be computed by at most two passes in a circuit. For
instance, Pr(Z1 = z1 | Z2:N = z2:N ) = Pr(Z1:N=z1:N )

Pr(Z2:N=z2:N ) = fS(Z1:N=z1:N )
fS(Z1=∅,Z2:N=z2:N ) where Z1 = ∅ implies

I(Z1 = z̃1) = 1,∀z̃1 ∈ Z1; thus, computing a conditional probability only requires two forward
processes in a circuit, each in linear time w.r.t. its size. In this paper, we focus on smooth and
decomposable circuits.

3 Neural Probabilistic Circuits
In this section, we introduce Neural Probabilistic Circuits (NPCs). We begin by describing
the model architecture and the inference process, illustrating how NPCs enable compositional
and interpretable predictions through logical reasoning (Section 3.1). Next, we elaborate on
the three-stage training algorithm for training NPCs. In particular, we propose two distinct
approaches for building circuits: a data-driven approach and a knowledge-injected approach
(Section 3.2). Finally, we provide a theoretical analysis establishing the relationship between
the error of the overall model and those of its individual modules (Section 3.3).

3.1 Model Architecture and Inference
Figure 1 presents an overview of an NPC, which consists of an attribute recognition model and
a task predictor. The attribute recognition model is a neural network that processes an input
image to identify its high-level visual attributes, such as color and shape. The task predictor is a
(normalized) probabilistic circuit that models the joint distribution over attributes and classes,
embedding either implicit or explicit logical rules within its structure and parameters during
learning. The circuit enables efficient probabilistic reasoning, including joint, marginal, and
conditional inferences. Specifically, given a particular assignment of attributes, the circuit can
infer the probability of a specific class. By leveraging these conditional dependencies alongside
the probability distributions of the various attributes (i.e., outputs from the attribute recognition
model), NPC produces the probabilities of the image belonging to various classes. The class
with the highest probability is recognized as the predicted class.
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Formally, let X ∈ X , Ak ∈ Ak, Y ∈ Y denote the input variable, the k-th attribute vari-
able, and the class variable. The variables’ instantiations are represented by x, ak, y, respec-
tively. In particular, we consider K attributes, i.e., A1, . . . , AK (or A1:K in short). Each
attribute Ak has qk possible values, i.e., |Ak| = qk. The attribute recognition model f(X; θ)
is parameterized by θ. Given an input instance x, the model outputs K probability vectors.
The k-th probability vector, denoted as fk(x; θ) ∈ Rqk , shows the probabilities of x’s k-th at-
tribute taking different values ak, i.e., [fk(x; θ)]ak

= Prθ (Ak = ak | X = x). The task predictor
fS(Y,A1:K ;w) is a probabilistic circuit with structure S and parameters w, which models the
joint distribution over Y,A1:K . Specifically, when taking an instance of attributes a1:K and a
class label y as input, the circuit outputs the joint probability Prw(Y = y,A1:K = a1:K). By
the virtue of its efficient inferences, the circuit also supports efficient conditional queries, e.g.,
Prw (Y = y | A1:K = a1:K) = fS(y, a1:K ;w)/fS(∅, a1:K ;w).

Prior to describing how an NPC predicts a class, we make the following mild assumptions
on the selected attributes.

Assumption 1 (Sufficient Attributes). Given the attributes, the class label is conditionally
independent of the input, i.e., Y ⊥ X | A1, . . . , AK .

Assumption 2 (Complete Information). Given any input, all attributes are conditionally mu-
tually independent, i.e., A1 ⊥ A2 ⊥ · · · ⊥ AK | X.

Remarks. The first assumption essentially assumes that the attributes are sufficient to infer
the class label of interest. The second assumption assumes the input contains complete infor-
mation regarding the attributes such that they are conditionally mutually independent. These
assumptions are mild and often hold in practice. For instance, in the context of traffic signs,
if the attributes include the shape (e.g., circle), color (e.g., red), and symbol (e.g., slash) of a
sign, they collectively provide enough information to infer the class label (e.g., no entry) without
requiring additional details from the raw image. On the other hand, the raw image fully encodes
the attributes (e.g., shape, color, and symbol). Once the input is observed, these attributes can
be independently determined.

Under Assumption 1 and 2, an NPC outputs the probability of an input x being a class y
as follows,

Prθ,w (Y = y | X = x) =
∑
a1:K

Prw (Y = y | A1:K = a1:K , X = x) · Prθ (A1:K = a1:K | X = x)

=
∑
a1:K

Prw (Y = y | A1:K = a1:K)︸ ︷︷ ︸
task predictor

·
K∏

k=1

Prθ (Ak = ak | X = x)︸ ︷︷ ︸
attribute recognition model

. (1)

Equation (1) is derived using the assumptions, and the two interior terms are given by the
circuit-based task predictor and the attribute recognition model, respectively. Subsequently,
the predicted class is the one with the largest probability, i.e., ŷ = argmaxy∈Y Prθ,w(Y = y |
X = x).

In summary, we propose a novel model architecture for image recognition tasks. The ar-
chitecture is interpretable by design, thanks to the integration of an attribute bottleneck and
the probabilistic semantics of probabilistic circuits. Together, these modules enable predic-
tions which can be interpreted using the likelihood of different attributes and the conditional
dependencies between attributes and classes.

3.2 Three-Stage Training Algorithm
In this section, we will propose a three-stage training algorithm for NPCs comprising the fol-
lowing stages: 1) attribute recognition through multi-task learning (Section 3.2.1), 2) circuit
construction via both data-driven and knowledge-injected approaches (Section 3.2.2), and 3)
joint optimization (Section 3.2.3).
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3.2.1 Attribute Recognition

We aim to train the attribute recognition model f(X; θ) such that each attribute is recognized
well. To this end, we adopt a multi-task learning framework [Zhang and Yang, 2021], where
each task is to recognize a particular attribute. Specifically, we use the cross-entropy loss for
each task and assign weights to the task losses based on the size of the corresponding attribute
space. These weights normalize the task losses, preventing certain tasks from dominating the
training process [Kendall et al., 2018, Grégoire et al., 2024, Wang and Chen, 2020]. The overall
training loss for attribute recognition is defined as follows,

LAttribute(θ;D) = − 1

K

∑
k

1

log qk

(
1

|D|
∑
x∈D

gTk (x)fk(x; θ)

)
. (2)

The term inside the parentheses represents the mean cross-entropy loss over the training dataset
D, where fk(x; θ) ∈ Rqk and gk(x) ∈ Rqk are, respectively, the output vector and the label vector
corresponding to the k-th attribute. Specifically, gk(x) is a probability vector that sums to one,
with each entry representing the ground-truth likelihood of x having a particular attribute value.
For instance, for the color attribute, an image of a polar bear would have a one-hot label vector
with 1 representing “white”. In contrast, an image of a zebra might have a probabilistic label
vector, with 0.5 representing “black” and 0.5 representing “white”.

3.2.2 Circuit Construction

We aim to construct a probabilistic circuit fS(Y,A1:K ;w) that models the joint distribution over
Y,A1:K . To achieve this, we propose two distinct approaches for building the circuit’s structure
and parameters: a data-driven approach and a knowledge-injected approach.

Data-Driven Approach This approach learns a circuit’s structure and optimizes its pa-
rameters using data in the form of {(y, a1:K)}. As described above, the training dataset is
defined as D = {(x, g1:K(x), y)}, where each attribute label is represented as a probability vec-
tor rather than a single value. For each data, we sample an ak from the categorical distribution
defined by gk(x), i.e., ak ∼ Categorical(gk(x)), k ∈ [K], which results in a processed dataset
D̄ = {(x, y, a1:K)}. 1) Structure Learning: LearnSPN Gens and Domingos [2013] is a main-
stream algorithm for learning a circuit’s structure from data. LearnSPN recursively identifies
independent groups to create product nodes, clusters data to form sum nodes, and assigns single
variables as leaf nodes. In our approach, we apply LearnSPN on D̄ to derive a structure tailored
to the observed data. 2) Parameter Learning: Given the learned structure, optimizing the
circuit’s weights (i.e., the weights of edges emanating from sum nodes) is framed as a maximum
likelihood estimation (MLE) problem, with the following loss function:

LMLE(w;D) = −
∑

(y,a1:K)∈D̄

log fS (y, a1:K ;w) .

We adopt the widely used CCCP algorthim Zhao et al. [2016b] which iteratively applies mul-
tiplicative weight updates on w to minimize LMLE(w; D̄). CCCP is guaranteed to converge
monotonously. Overall, with the learned structure and optimized parameters, the circuit cap-
tures the underlying logical rules present in the observed data, thus effectively modeling the
joint distribution over attributes and classes.

Knowledge-Injected Approach Incorporating domain knowledge into a model helps en-
sure that its behavior aligns with the human’s understanding of the domain. In practice, domain
knowledge can be represented as a set of weighted logical rules. These rules are usually derived
by observing patterns in existing samples, with the weight of each rule reflecting the frequency
with which the rule holds true among the observed data. For instance, in the context of traffic
signs, a rule could be: I(shape = circle)∧I(color = red)∧I(symbol = slash)∧I(class = no entry),
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Figure 2: Illustration of a probabilistic circuit constructed by the knowledge-
injected approach. The circuit encodes the set of weighted logical rules:
{w1 · (I (A1 = 0) ∧ I (A2 = 0) ∧ I (Y = 0)) , w2 · (I(A1 = 1) ∧ I(A2 = 1) ∧ I(Y = 1)) , w3 ·
(I (A1 = 0) ∧ I (A2 = 1) ∧ I (Y = 1))}.

as this holds true for an image of a “no entry” sign. The rules summarized for various tasks,
along with the process of establishing them, are detailed in Appendix E. By leveraging these
rules, the knowledge-injected approach manually constructs a circuit’s structure and assigns its
parameters to model the joint distribution over Y,A1:K . 1) Structure Construction: We
construct the structure of the circuit to be a depth-2 weighted sum-of-products formula. More
specifically, consider L rules of the form {rl := I(A1 = al1) ∧ . . . ∧ I(AK = alK) ∧ I(Y = yl)}Ll=1.
The structure is constructed as follows: i) A set of leaf nodes is created to represent the indicator
variables of Y,A1:K . ii) Based on these leaf nodes, a layer of product nodes is built, where each
product node is associated with a rule. Specifically, the l-th product node connects to the leaf
nodes that represent the conditions in the rule rl, i.e., I(A1 = al1), . . . , I(AK = alK), I(Y = yl).
iii) A single sum node, which serves as the root node of the circuit, is placed above the product
node layer. This sum node aggregates the outputs of all product nodes. 2) Parameter As-
signment: The parameters in the circuit refer to the weights of edges connecting the product
nodes to the sum node. The weight for the l-th edge is assigned as the frequency of the rule rl.
An example of a circuit constructed using this approach is illustrated in Figure 2. Through these
two steps, the human-predefined logical rules are manually encoded into the circuit’s structure
and parameters. Proposition 1 ensures that the output of the circuit’s root node represents the
empirical joint probability over attributes and classes.

Proposition 1. The circuit constructed using the knowledge-injected approach models the em-
pirical joint distribution over attributes and classes. Specifically, the output of the root node
represents the empirical joint probability of attributes and classes.

Proof. Let R denote the rule variable. For a given instance (y, a1:K), the output of the root
node is computed as,

fS(y, a1:K ;w) =
∑
l

Pr
w
(R = rl) · I(a1 = al1) . . . I(aK = alK) · I(y = yl)

=
∑
l

Pr
w
(R = rl) · Pr

w
(A1:K = a1:K , Y = y | R = rl)

= Pr
w
(A1:K = a1:K , Y = y),

where Prw(R = rl) is the weight for the l-th edge and I(a1 = al1) . . . I(aK = alK) · I(y = yl)
is the output of the l-th product node. The condition R = rl indicates that the rule I(A1 =
al1) ∧ . . . ∧ I(AK = alK) ∧ I(Y = yl) is satisfied.

3.2.3 Joint Optimization

Thanks to the differentiability of circuits, NPCs can be fine-tuned in an end-to-end manner to
further improve the performance of the overall model on downstream tasks. Specifically, the
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loss function is defined as follows,

LJoint(θ, w; (x, y)) = −
∑

(x,y)∈D

log Prθ,w(Y = y | X = x). (3)

To optimize this loss, we simply employ the stochastic gradient descent algorithm for updating
θ, while the projected gradient descent algorithm is used to update w to ensure the positivity
of the circuit weights. The detailed optimization process is provided in Appendix A.

3.3 Theoretical Analysis
In this section, we present an error analysis for NPCs to understand how the performance
of individual modules affects that of the overall model. Given the overall model and the at-
tribute recognition model are discriminative models, while the probabilistic circuit is a gen-
erative model, we define the following errors: 1) Error of the overall model: ϵθ,w :=
EX [dTV(Prθ,w(Y | X),Pr(Y | X))], which represents the expected total variance distance be-
tween the learned and true conditional distributions of Y given X. 2) Error of the attribute
recognition model: ϵθ := EX [dTV(Prθ(A1:K | X),Pr(A1:K | X))], which quantifies the ex-
pected total variation distance between the learned and true conditional distributions of the
attributes A1:K given X. Additionally, we define ϵkθ := EX [dTV(Prθ(Ak | X),Pr(Ak | X))] as
the error for each individual attribute Ak. 3) Error of the probabilistic circuit: ϵw :=
dTV(Prw(Y,A1:K),Pr(Y,A1:K)), which measures the total variation distance between the learned
and true joint distributions of Y and A1:K . The above errors capture how closely the learned
models approximate the underlying true distributions.

Theorem 2 (Compositional Error). Under Assumptions 1 and 2, the error of an NPC is
bounded by a linear combination of the errors of the attribute recognition model and the circuit-
based task predictor. In particular, the error of the attribute recognition model across all at-
tributes is bounded by the sum of the errors for each attribute, i.e.,

ϵθ,w ⩽ ϵθ + 2ϵw ⩽
K∑

k=1

ϵkθ + 2ϵw.

Proof Sketch. By leveraging Equation (1), the upper bound of ϵθ,w is decomposed into two terms.
The first term depends only on θ and represents the error of the attribute recognition model,
while the second term depends only on w and captures the error of the circuit. In particular,
the overall error of the attribute recognition model is further expanded into the errors across
individual attributes.

The complete proof is deferred to Appendix B. Theorem 2 demonstrates that reducing the
error for any single attribute helps reduce the overall error of the attribute recognition model.
More importantly, the error bound of an NPC is decomposable into contributions from its
individual modules, which accredits to the compositional nature of NPCs and the incorporation
of probabilistic circuits. Consequently, reducing the error of any individual module helps improve
the performance of the NPC.

4 Model Explanations
As discussed in Section 3.1, model predictions can be interpreted using the attribute recognition
results and the conditional dependencies between classes and attributes. To further enhance the
human’s understanding of the model predictions, we provide various explanations addressing
the following questions: 1) Which assignment of attributes contributes most to the model predic-
tion? 2) In cases where the model prediction was incorrect, could an adjustment to the attribute
recognition results lead to a correct prediction? With a slight abuse of notation, let θ denote
the parameters of the trained attribute recognition model and let S,w denote the structure and
parameters of the constructed probabilistic circuit.
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4.1 Most Probable Explanations
To address the first question, we define Most Probable Explanations (MPEs) for NPCs for
identifying the highest contributing attribute assignments.

Definition 1 (Most Probable Explanations). Given an input x with prediction ŷ, the most prob-
able explanation is defined as the attribute assignment that contributes the most in Prθ,w(Y = ŷ |
X = x). Formally, a∗1:K := argmaxa1:K

Prw (Y = ŷ | A1:K = a1:K)·
∏K

k=1 Prθ (Ak = ak | X = x).

MPE inference is generally challenging for probabilistic circuits. Such inference is tractable
for selective circuits [Sánchez-Cauce et al., 2021], but this type of circuit is relatively restrictive
in expressiveness. As the number of attributes is small in our experimental settings, we simply
use the brute-force algorithm to infer MPEs. Developing more efficient heuristics for MPE
inference remains an open problem and is not the primary focus of this paper. Therefore, we
leave it for future work.

MPEs provide a concrete explanation as to how the model arrives at a specific class pre-
diction. Specifically, the predicted class is primarily due to the input image’s attributes being
recognized as a∗1:K . These explanations offer attribute-level insights into the model’s predictions,
thereby enhancing interpretability and the human’s understanding of the predictions.

To gain deeper insights into how these explanations represent the model’s behavior, we define
a property for MPEs, called alignment, and introduce a corresponding metric to characterize
the behavior of the model.

Definition 2 (Alignment Rate). An MPE a∗1:K is considered aligned with a sample x if a∗1:K
matches the ground-truth attribute assignments of x, i.e., a∗k ∈ {j ∈ [qk] | gjk(x) > 0}, k ∈ [K].
The alignment rate is defined as the proportion of aligned MPEs among all correctly predicted
samples.

A high alignment rate reflects strong model reliability, as it suggests that the ground-truth
attribute assignments contribute the most during prediction. In other words, the model closely
adheres to the human’s understanding when making predictions.

4.2 Counterfactual Explanations
To address the second question, we define Counterfactual Explanations (CEs) [Wachter et al.,
2017] for NPCs to explore admissible changes in attribute recognition results that can correct
any incorrectly predicted classes.

Definition 3 (Counterfactual Explanations). Given an input x which has an incorrect model
prediction. Denote b := {bk}k∈[K], bk := (. . . bk,ak

. . .)
⊤
ak∈Ak

, and Prb(Y = y | X = x) :=∑
a1:K

Prw (Y = y | A1:K = a1:K) ·
∏K

k=1 bk,ak
. The counterfactual explanation for the ground-

truth label y is a set of probability vectors b that maximizes Prb(Y = y | X = x), i.e., the
solution to the following optimization problem,

max
b

Prb(Y = y | X = x), s.t.
∑

ak∈Ak

bk,ak
= 1 (0 ⩽ bk,ak

⩽ 1), ∀k ∈ [K]. (4)

We adopt the projected gradient ascent algorithm to generate the CEs, which is detailed in
Algorithm 1.
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Algorithm 1 Generation of Counterfactual Explanations
1: Input: Feasible region C := {b :

∑
ak∈Ak

bk,ak = 1 (0 ⩽ bk,ak ⩽ 1), ∀k ∈ [K]},
initial values b

(0)
k,ak

:= Prθ(Ak = ak | X = x), ak ∈ Ak, k ∈ [K], learning rate γ
2: for t = 0, 1, . . . , T − 1 do

# Computing b
(t+1)
k,ak

:= PC

{
b
(t)
k,ak

+ γ
∂ log Pr

b(t) (Y=y|X=x)

∂bk,ak

}
[Wang and

Carreira-Perpinán, 2013]
3: for k = 1, . . . ,K do
4: Sort {b(t)k,ak

+ γ
∂ log Pr

b(t) (Y=y|X=x)

∂bk,ak
}ak∈Ak

into uk,1 ⩾ uk,2 ⩾ . . . ⩾ uk,qk

5: Find ρk :=
∑qk

j=1 I
(
uk,j >

1
j

(∑j
l=1 uk,l − 1

))
6: Define λk := 1

ρk

(
1−

∑ρk
j=1 uk,j

)
7: Let b

(t+1)
k,ak

:= max
{
b
(t)
k,ak

+ γ
∂ log Pr

b(t) (Y=y|X=x)

∂bk,ak
+ λk, 0

}
, ak ∈ Ak, k ∈ [K]

8: Output: Counterfactual explanations b(T )

CEs reveal the model’s inner workings by identifying the attribute recognition changes re-
quired to correct an incorrect prediction. Similar to MPEs, these explanations deliver attribute-
level insights into the model’s decision-making process, thereby improving interpretability.

Next, we introduce a metric to evaluate the effectiveness of CEs in correcting the model
predictions.

Definition 4 (Correction Rate). The correction rate is defined as the proportion of initially
incorrectly predicted samples that are corrected by CEs among all initially incorrectly predicted
samples.

A high correction rate signifies that the generated CEs effectively correct model predictions
by adjusting the attribute recognition results.

5 Experiments

5.1 Experimental Setup
Datasets We evaluate the model performance on a variety of benchmark datasets. 1)
MNIST-Addition: We derive this dataset from the original MNIST dataset [LeCun et al.,
1998] by following the general preprocessing steps and procedures detailed in [Manhaeve et al.,
2018]. Each MNIST-Addition sample consists of two images randomly selected from the original
MNIST. The digits in these images, ranging from 0 to 9, represent two attributes, with their
sum serving as the class label. A total of 35,000 samples are created for MNIST-Addition. 2)
GTSRB: GTSRB [Stallkamp et al., 2012] is a dataset comprising 39,209 images of German
traffic signs, with class labels indicating the type of signs. Additionally, we annotate each sam-
ple with four attributes: “color”, “shape”, “symbol”, and “text”. The values for these attributes
are detailed in Appendix D. 3) CelebA: CelebA [Liu et al., 2015] consists of 202,599 celebrity
face images annotated with 40 binary concepts. Here, we select the 8 most balanced binary
concepts2 and group them into 5 attributes: “mouth”, “face”, “cosmetic”, “hair”, and “appear-
ance”. Following Zarlenga et al. [2022], each unique combination of concept values is treated
as a group. To balance the dataset and increase its complexity, we rank these groups by the
number of images they contain and pair them strategically: the group with the most images
is merged with the one with the fewest, the second most with the second fewest, and so on.
The above strategy results in 127 total classes. 4) AwA2: AwA2 [Xian et al., 2018] contains
37,322 images of 50 types of animals, each annotated with 85 binary concepts. Certain concepts,

2Certain concepts are excluded due to political or ethical concerns.
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Table 1: Model properties. “Interpretability” indicates whether the outputs produced by
a concept/attribute recognition model are interpretable and whether humans can interpret
the final decisions using these outputs. “Data-Driven Rules” denotes whether a model can
incorporate logical rules learned from data. “Human-Predefined Rules” specifies whether a
model can integrate logical rules predefined by humans. “Theoretical Guarantee” indicates
whether a model provides a theoretical guarantee on the relationship between the performance
of the overall model and that of its individual components.

Model Interpretability Data-Driven Human-Predefined Theoretical
Rules Rules Guarantee

CBM [Koh et al., 2020] ✓ ✗ ✗ ✗

CEM [Zarlenga et al., 2022] ✗ ✗ ✗ ✗

DCR [Barbiero et al., 2023] ✓ ✓ ✗ ✗

NPC (ours) ✓ ✓ ✓ ✓

such as those describing non-visual properties (e.g., “fast”, “domestic”) or indistinctive features
(e.g., “chewteeth”), or those representing background information (e.g., “desert” and “forest”),
are excluded. After the exclusion, 29 concepts remain, which are then grouped into 4 attributes:
“color”, “surface”, “body”, and “limb”. The specific values for these attributes are provided in
Appendix D. For all datasets, we split the samples into training, validation, and testing sets by
a ratio of 8:1:1.

Baselines We select CBM [Koh et al., 2020] and several representative variants as baselines.
Specifically, we choose CEM [Zarlenga et al., 2022], a method that uses high-dimensional con-
cept embeddings as the bottleneck instead of concept probabilities, and DCR [Barbiero et al.,
2023], which introduces a deep concept reasoner as the task predictor rather than relying on a
simple linear layer. Additionally, we train an end-to-end DNN [He et al., 2016] as an additional
baseline. It is important to note that CEM and the end-to-end DNN are not interpretable, as
their components are not explicitly understandable by humans, even though they may achieve
competitive performance on downstream tasks. A comparison of model properties is summa-
rized in Table 1. Detailed descriptions of model architectures and training details are deferred
to Appendix C.

Evaluation Metrics Considering the compositional nature of NPCs, we introduce distinct
evaluation metrics for the various modules as well as the overall model. 1) Attribute Recog-
nition Model: We employ two metrics for evaluating the attribute recognition model. First,
we propose the mean total variation (TV) distance between the output probability vectors from
the attribute recognition model and the corresponding ground-truth probability vectors. The
metric is defined as: 1

K

∑
k

1
|Dtest|

∑
x∈Dtest

dTV(fk(x; θ), gk(x)), where a smaller distance indi-
cates better performance. For baseline models producing concept probabilities, we group the
outputs into attributes and process them as probability vectors. Second, we adapt the mean
concept accuracy metric used in [Zarlenga et al., 2022] for NPCs. For an input x with nk ground-
truth values for the attribute Ak, we identify the top-nk values in fk(x; θ) and set them to one
while the rest are set to zero. We then calculate the accuracy by comparing these processed
outputs with the ground-truth concept labels. 2) Circuit-Based Task Predictor: We use
the mean likelihood to measure the performance of circuit-based task predictors, which is given
by: 1

|D̄test|
∑

(y,a1:K)∈D̄test
Prw(Y = y,A1:K = a1:K). A larger mean likelihood suggests that

the circuit models the joint distribution more accurately. 3) Overall Model: We adopt the
standard classification accuracy as the evaluation metric for the overall model.
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Table 2: Classification accuracy of NPCs and four baseline models on four benchmark datasets
over five random seeds. “*” denotes uninterpretable models. The best results for each dataset
are highlighted in bold, while the second-best results are underlined.

Model MNIST-Add (%) GTSRB (%) CelebA (%) AwA2 (%)

DNN∗ 99.057± 0.08 99.939± 0.04 36.963± 0.72 93.351± 0.17
CBM 98.606± 0.03 99.810± 0.04 16.552± 0.87 82.286± 0.47
CEM∗ 98.740± 0.10 99.736± 0.06 25.218± 0.30 85.102± 0.27
DCR 94.597± 2.05 87.071± 6.93 7.055± 3.04 44.117± 10.05
NPC(Data) 99.171± 0.11 99.888± 0.08 33.739± 0.90 87.281± 0.39
NPC(Knowledge) 99.189± 0.08 99.944± 0.04 31.727± 0.51 68.519± 3.54

5.2 NPCs vs. Baselines
We compare NPCs against baseline models across the four benchmark datasets, with the results
summarized in Table 2. Specifically, we refer to the NPC whose circuit was learned using the
data-driven approach as “NPC(Data)” and the NPC whose circuit was constructed using the
knowledge-injected approach as “NPC(Knowledge)”.

The results in Table 2 demonstrate that NPCs outperform all other concept-based baseline
models. Specifically, NPC(Knowledge) achieves the best performance on the MNIST-Addition
and GTSRB datasets, while NPC(Data) leads on the CelebA and AwA2 datasets. Notably,
NPCs achieve superior performance even compared to CEM, an uninterpretable model that
relies on high-dimensional concept embeddings, highlighting NPC’s effectiveness in leveraging
interpretable concept probabilities for downstream classification tasks.

Remarkably, NPCs achieve superior performance even compared to that of the end-to-end
DNN, surpassing its classification accuracy on the MNIST-Addition and GTSRB datasets. Nev-
ertheless, small gaps remain between the end-to-end DNN and NPCon more complex datasets
like CelebA and AwA2. The above findings demonstrate that, while there is still small room
for improvement compared to black-box models, NPCs strike a compelling balance between
interpretability and task performance. Overall, the results underscore the remarkable poten-
tial of interpretable models, demonstrating their ability to achieve competitive performance in
downstream tasks compared to baselines and even black-box end-to-end DNN models.

5.3 Ablation Studies
In this section, we delve into NPCs from additional perspectives. Specifically, we will analyze the
integration of attributes, the influence of attribute selections, the effects of various approaches
to constructing the task predictor, and, lastly, the impact of joint optimization.

5.3.1 Attributes vs. Concepts

Unlike existing concept-based models that utilize individual binary concepts (e.g., “red color”,
“yellow color”), NPCs focus on concept groups, i.e., attributes (e.g., “color”). Here, we aim to
explore the benefits of using attributes compared to individual concepts. To this end, we replace
the concept recognition model in CBM [Koh et al., 2020] with an attribute recognition model,
resulting in a new model called the Attribute Bottleneck Model (ABM). ABM comprises an
attribute recognition model and a linear layer serving as the task predictor. We employ the
training loss from CBM to train ABM, replacing the concept loss with the attribute loss as
defined in Equation (2). The performance comparison between CBM and ABM is presented in
Table 3.

The results in Table 3 show that, in terms of the mean TV distance, ABM outperforms CBM
on the MNIST-Addition and GTSRB datasets, albeit exhibiting slightly worse performance on
the CelebA and AwA2 datasets. On the other hand, ABM consistently surpasses CBM in
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Table 3: Comparison between CBM and ABM across four benchmark datasets in terms of
mean TV distance and mean concept accuracy. For TV distance, lower values are better. For
accuracy, higher values are better. The better values are in bold.

Metric Model MNIST-Add GTSRB CelebA AwA2

Mean TV Distance CBM 0.0080 0.0023 0.1744 0.0514
ABM 0.0058 0.0007 0.1759 0.0775

Mean Concept Accuracy CBM 98.64% 99.80% 32.52% 82.21%
ABM 98.99% 99.84% 45.00% 89.69%

mean concept accuracy across all datasets. These findings underscore the effectiveness of the
attribute recognition model, indicating that attributes capture more nuanced information. In
particular, we hypothesize that inherent relationships may exist both within the values of any
single attribute and across different attributes. Therefore, treating all values as independent
concepts neglects these interdependencies, potentially leading to inferior performance. Overall,
these results suggest the benefits of utilizing attributes in preserving relational constraints within
predictions and thus improving model performance.

5.3.2 Impact of Attribute Selection

During inference, an NPC utilizes sufficient attributes to produce final predictions. Here, we
aim to investigate the following questions: How does the exclusion of one particular attribute
during inference impact the performance of NPC on downstream tasks? How does the exclusion
of different attributes vary the impact?

Assuming the excluded attribute is A1, the predicted score for the class y would become∑
a2:K

Prw(Y = y | A2:K = a2:K) ·
∏K

k=2 Prθ(Ak = ak | X). We apply this inference process on
the GTSRB dataset and the resulting task performance is presented in Figure 3 (Left).

Figure 3: NPC classification accuracy on the GTSRB and MNIST-Addition datasets with
attribute exclusions. The gray bars indicate inference with all attributes, while non-gray bars
indicate inference with one particular attribute excluded.

We observe that, when NPC has one fewer attribute at its disposal during inference, the
classification accuracy decreases, due to the fact that the assumption of sufficient attributes
(Assumption 1) no longer holds in this scenario, and that the equality in Equation (1) was
violated. Therefore, the formula above does not correctly represent Prθ,w(Y = y | X). As a
result, relying on the above formula for inference can adversely affect the predictions.

On the other hand, we observe that excluding different attributes can lead to varying impacts
on the task performance. Specifically, excluding the “color” or “shape” attributes results in

13



only a slight drop in accuracy, whereas excluding the “symbol” or “text” attributes leads to a
significant decline. We accredit such discrepancy to the distinct properties of these attributes.
More specifically, attributes such as “color” and “shape” are generally not decisive, meaning that
they do not decisively determine the final class, and that their absence can be compensated
by leveraging information from the other attributes. For instance, even without having any
indication of “red” or “octagon”, it is still possible to infer an input representing a stop sign so long
as the “text” attribute indicates “stop”. Thus, excluding the non-decisive attributes has minimal
impact on the performance. In contrast, “symbol” and “text” attributes are decisive for many
instances and thus are crucial for distinguishing between certain classes. For example, without
the “text” attribute, it then becomes impossible to differentiate speed limit signs indicating
different speeds. Similarly, without the “symbol” attribute, distinguishing between a left-curve
and a right-curve sign is no longer feasible. Hence, excluding decisive attributes can severely
impair predictions.

For the MNIST-Addition dataset, Figure 3 (Right) demonstrates similar findings. In partic-
ular, as both attributes are essential for determining the final class, i.e., the sum, the removal
of either attribute results in a substantial performance decline.

In summary, utilizing insufficient attributes compromises NPC’s performance on downstream
tasks, and the impact of excluding different attributes varies depending on the properties of the
attributes themselves.

5.3.3 Impact of Task Predictor Construction Approaches

In Section 3.2.2, we introduce two distinct approaches for constructing probabilistic circuits: the
data-driven approach and the knowledge-injected approach. Here, our objective is to investigate
the impact of these construction methods. Specifically, we aim to address the following questions:
Which approach produces a circuit that better captures the data distribution? Which approach
produces a circuit that performs more effectively as a task predictor? We start by comparing the
mean likelihood of the two circuits. Then, we examine the classification accuracy of the overall
models consisting of a well-trained attribute recognition model together with either circuit (data
driven or knowledge injected). The results are summarized in Table 4.

Table 4: Performance comparison between circuits constructed using data-driven and
knowledge-injected approaches, along with the classification accuracy of overall models com-
bining either circuit with a well-trained attribute recognition model. The better results are in
bold.

Metric Architecture MNIST-Add GTSRB CelebA AwA2

Mean Likelihood Circuit (Data) 1.010e-2 3.663e-02 2.082e-02 1.263e-04
Circuit (Knowledge) 1.007e-2 3.663e-02 2.091e-02 1.255e-04

Accuracy Model (Data) 99.17% 99.85% 32.74% 68.52%
Model (Knowledge) 99.17% 99.85% 31.56% 23.47%

In terms of classification accuracy, the models combining the different circuits exhibit similar
performance on MNIST-Addition, GTSRB, and CelebA datasets. Such similarity suggests that
the two-layered circuit constructed using the knowledge-injected approach is sufficient to provide
accurate relational information among attributes and classes for simpler datasets.

In contrast, for the more complex AwA2 dataset, Model (Data) outperforms Model (Knowl-
edge) by a wide margin due to the presence of multi-valued attributes in AwA2, which results in
a large number of valid combinations of attribute values. Consequently, each combination may
correspond to a very small joint probability. Under these circumstances, even a slight difference
in mean likelihood may induce a significant change in the circuit’s ability to capture the data
distribution. For instance, even a marginally lower mean likelihood might indicate the failure
of the circuit to capture the joint probabilities of a large quantity of combinations. As shown in
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Table 4, the mean likelihood of Circuit (Knowledge) is slightly lower than that of Circuit (Data)
for the AwA2 dataset, suggesting that, in this case, the knowledge-injected circuit might have
failed to capture sufficient nuanced relationships among attributes and classes, while the data-
driven circuit is better suited for representing the joint distribution of the data, thus leading to
a better performance on the downstream task.

5.3.4 Impact of Joint Optimization

When training the NPCs, we adopt a three-stage training algorithm, where we first indepen-
dently train the attribute recognition model and the task predictor, followed by a joint op-
timization for the overall model. Here, we aim to investigate how the third stage, i.e., joint
optimization, affects the performance of NPCs. To this end, we compare the performance of
NPCs before and after applying the joint optimization. The comparison is illustrated in Figure
4.

Figure 4: Classification accuracy of NPC(Data) and NPC(Knowledge) on the four benchmark
datasets. The blue bars indicate performance prior to joint optimization, while the orange bars
illustrate performance after applying joint optimization.

In general, joint optimization enhances model performance across the various datasets.
Specifically, for the AwA2 dataset, joint optimization leads to substantial improvements for
both NPC(Data) and NPC(Knowledge), demonstrating its effectiveness. In contrast, for the
CelebA dataset, the performance stays roughly the same after applying joint optimization, with
a marginal increase in performance for NPC(Data) and a marginal decrease in performance only
for NPC(Knowledge). Nevertheless, slight performance improvements are generally observed on
the GTSRB and MNIST-Addition datasets for both NPCs. Overall, these results suggest that
joint optimization provides additional benefits for NPCs in terms of downstream tasks. In
particular, for datasets with superior performance after the initial training, joint optimization
provides additional but modest gains. In contrast, for datasets with moderate performance after
the initial training, joint optimization plays a pivotal role in delivering significant performance
improvements.

5.4 Model Explanations
In this section, we explore two types of explanations and provide examples to illustrate how the
explanations facilitate the human’s understanding of NPC’s inner workings and interpret the
model’s behavior.
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5.4.1 Most Probable Explanations

Figure 5 presents some examples for NPC(Data) from the four benchmark datasets. Specifically,
each example comprises an image, the ground-truth labels for the class and attributes, the class
predicted by NPC(Data), and, lastly, the corresponding MPE which accounts for the attribute
assignment that contributes most significantly to the prediction. In these instances, NPC(Data)
provides correct class predictions, and the MPEs are aligned with the ground-truth attribute
labels. For instance, the MPE for the example from GTSRB is {Color: Red; Shape: Circle;
Symbol: Text; Text: 30}, which precisely matches the ground-truth attribute labels. Such
alignment between MPEs and attribute labels indicates that the model employs human-like
reasoning and makes reliable decisions. Examples for NPC(Knowledge) are deferred to Appendix
F.

Figure 5: Examples from the four benchmark datasets. Each example includes an image, the
ground-truth class label, the ground-truth attribute labels, the NPC(Data) class prediction,
and, lastly, the corresponding MPE. These examples illustrate MPEs that align with the ground-
truth attribute labels. The CelebA image is redacted in compliance with its terms of use.

The MPEs alignment rates are shown in Figure 6 (Left). We observe that NPC(Knowledge)
exhibits a relatively low alignment rate on the AwA2 dataset, suggesting that the ground-
truth attribute assignment does not contribute the most to the correct predictions for certain
instances. Such misalignment could be caused by the knowledge-injected approach failing to
capture the relatively more complex conditional dependencies between classes and attributes
for this particular dataset, thereby affecting the model’s prediction process. On the other hand,
the MPEs alignment rates in the other scenarios are close to 100%, indicating that when it
makes correct predictions, the model predominantly relies on attribute assignments matching
the ground truths. Therefore, the model is considered reliable as its prediction process properly
aligns with the human’s decision-making process.

5.4.2 Counterfactual Explanations

Figure 7 illustrates some examples for NPC(Data) from the four benchmark datasets. Each
sample consists of an image, the attribute and class predictions, the generated CE, and, lastly,
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Figure 6: MPE alignment rate and CE correction rate for NPCs across the four bench-
mark datasets. The blue bars represent NPC(Data), while the orange bars represent
NPC(Knowledge). Error bars indicate the standard deviation over five random seeds.

the class prediction corrected by the CE. In these examples, NPC(Data) incorrectly predicts
the class, while CEs effectively correct them by making minimal adjustments to the attribute
predictions. For instance, for the MNIST-Addition dataset, changing the “Number-Second”
attribute from “4” to “9” corrects the class prediction from “11” to “16”. Similarly, for the
GTSRB dataset, the predicted class is corrected by adjusting the “Text” attribute prediction.
For the CelebA dataset, the CE yields the correct class prediction primarily by increasing the
probability of “Attractive” from the “Appearance” attribute. Finally, for the AwA2 dataset, the
CE corrects the class prediction from “Horse” to “Deer” primarily by increasing the probability of
“Brown” for the “Color” attribute. Examples for NPC(Knowledge) are provided in Appendix F.

Figure 7: Examples from the four benchmark datasets. Each example includes an image,
the NPC(Data) attribute and class predictions, the corresponding CE, and the class prediction
corrected by CE. These examples focus on CEs that successfully correct the class predictions.
For simplicity, both attribute predictions and CEs display only the most confident value for
each attribute. The CelebA image is redacted in compliance with its terms of use.

The CE correction rates are presented in Figure 6 (Right). For simpler datasets like MNIST-
Addition and GTSRB, the generated CEs exhibit high correction rates, indicating their effec-
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tiveness in correcting predictions. However, for more complex datasets such as CelebA and
AwA2, the correction rates are lower, highlighting the limit of the efficacy of the generated CEs
on complex datasets. Such a limit underscores the future need for more advanced algorithms
for generating CEs that can correct misclassifications with excellent correction rates, even for
complex datasets.

6 Limitations and Discussions
In this section, we discuss the limitations of NPCs from multiple perspectives, highlighting
potential future directions for improvement.

Model Architecture Compared to end-to-end DNNs, NPCs offer superior interpretability
by decomposing a model into semantically meaningful modules, enabling humans to combine
module outputs to understand the final decisions. Nevertheless, the attribute recognition model
itself remains a black box, and its opaque inner workings make it difficult to ensure that its
outputs truly represent the probabilities for the various attributes. For instance, the model
might learn spurious correlations and incorrectly map background features, instead of actual at-
tributes, to outputs. Future work may focus on increasing the transparency within the attribute
recognition model, thereby enhancing its interpretability.

Structure of Probabilistic Circuits In NPCs, the task predictor, implemented using a
probabilistic circuit, is either learned using LearnSPN [Gens and Domingos, 2013] or manually
constructed based on human-predefined rules. The circuit generated by LearnSPN, however,
may contain an excessive number of nodes and edges, resulting in a slower inference. Alternative
methods [Vergari et al., 2015, Mauro et al., 2017] may be explored to create more compact
circuits for added inference efficiency. On the other hand, manually constructed circuits employ
simpler structures with only two layers. While it may improve efficiency, such simplicity may
limit the circuit’s expressiveness, potentially degrading its performance on complex datasets
like AwA2. Future work may focus on improved balancing between circuit expressiveness and
structural complexity.

Assumption of Complete Information The assumption of complete information in this
paper assumes that attributes are conditionally independent given the input. However, recent
studies suggest that this assumption limits model expressiveness [van Krieken et al., 2024] and
potentially introduces spurious correlations, also known as reasoning shortcuts [Marconato et al.,
2023, Bortolotti et al., 2024]. Investigating whether this issue arises in NPCs and identifying
ways to address it would be a valuable direction for future research.

Reducing Trade-Offs between Interpretability and Task Performance In this
paper, we show that, with the integration of attribute recognition and probabilistic circuit,
NPC produces interpretable predictions for downstream tasks while achieving superior per-
formance. Looking ahead, we believe that, by incorporating more fine-grained and diverse
attributes that are semantically meaningful, along with a structure that reasons over these
attributes using logical rules with increased complexity, we shall devise compositional model de-
signs that further reduce the trade-offs between interpretability and performance of downstream
tasks.

7 Related Work
In this section, we discuss several areas of research relevant to our proposed method.
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Concept Bottleneck Models and Variants Concept bottleneck models (CBMs) and
their variants are a class of machine learning models that organize their decision-making pro-
cess around high-level, human-understandable concepts, offering enhanced transparency. First
introduced by Koh et al. [2020], CBMs decompose a black-box DNN into two modules: a con-
cept recognition model, responsible for predicting various human-specified concepts, and a task
predictor, which performs classifications on the predicted concepts.

Subsequent research has focused on improving these two modules. Zarlenga et al. [2022], Yeh
et al. [2020], Kazhdan et al. [2020] extend the concept recognition model by representing con-
cepts as high-dimensional embeddings rather than simple probabilities. Additionally, Mahinpei
et al. [2021], Sawada and Nakamura [2022], Sarkar et al. [2022], Marconato et al. [2022] intro-
duce unsupervised neurons into the bottleneck to enhance the model’s learning capacity. While
improving the performance on downstream tasks, these extensions compromise interpretability,
as the dimensions within concept embeddings and the unsupervised neurons lack explicit seman-
tic meanings. In contrast, utilizing predicted concept probabilities gives better interpretability.
On the other hand, there have been recent efforts to improve the interpretability of the task
predictor. Instead of using a linear layer as the task predictor, several approaches [Barbiero
et al., 2023, Ciravegna et al., 2023, Rodríguez et al., 2024] design new architectures to embed
logical rules and enable classifications via reasoning. For instance, Barbiero et al. [2023] propose
a deep concept reasoner, while Rodríguez et al. [2024] introduce a soft decision tree as the task
predictor. These approaches optimize their parameters using observed data, thus extracting
the underlying logical rules inherent within the data. In comparison, architectures that directly
encode human-predefined logical rules through their structure and parameters offer means to
explicitly represent domain knowledge.

Probabilistic Circuits Probabilistic circuits [Sánchez-Cauce et al., 2022] are rooted di-
rected acyclic graphs designed to represent the joint distribution of a set of variables. The
circuits comprise three types of nodes: 1) leaf nodes, which correspond to input variables; 2)
sum nodes, which compute weighted sums of their child nodes; and 3) product nodes, which
compute products of their child nodes. When satisfying the properties of decomposability and
smoothness, a probabilistic circuit becomes a tractable probabilistic model, ensuring efficient
inferences over various distributions [Poon and Domingos, 2011]. Specifically, joint, marginal,
and conditional probabilities of input variables can be computed in at most two passes (from
leaf nodes to the root node), with computational complexity linear in the size of the circuit.
Consequently, probabilistic circuits combine the expressiveness of traditional graphical models
with the scalability of modern deep learning frameworks.

Structure learning for probabilistic circuits aims to design structures that effectively balance
expressiveness and computational efficiency. Xia et al. [2023] categorize existing structure learn-
ing methods into four types: 1) handcrafted structure learning, where structures are manually
designed for specific datasets [Gens and Domingos, 2012, Poon and Domingos, 2011]; 2) data-
based structure learning, which uses heuristic [Adel et al., 2015, Dennis and Ventura, 2012, Gens
and Domingos, 2013, Krakovna and Looks, 2016, Molina et al., 2018, Rahman and Gogate, 2016,
Rooshenas and Lowd, 2014, Vergari et al., 2015] or non-heuristic algorithms [Peharz et al., 2014,
Lee et al., 2014, Trapp et al., 2016, Peharz et al., 2019] to learn structures from data; 3) random
structure learning, where structures are randomly generated as a flexible starting point [Peharz
et al., 2019, Rashwan et al., 2016, Trapp et al., 2019]; and 4) ensemble structure learning, which
combines multiple structures to improve generalization to high-dimensional data [Ventola et al.,
2020]. In this paper, we utilize the first and second types of structure learning approaches to
embed explicit and implicit logical rules, respectively.

Parameter learning for probabilistic circuits involves finding optimal parameters for a given
structure, enabling the circuits to accurately capture the underlying probability distributions
within the observed data. Parameter learning can be broadly categorized into two types: gen-
erative and discriminative. Generative parameter learning [Poon and Domingos, 2011, Peharz,
2015, Rashwan et al., 2016, Zhao et al., 2016a,b], the most common paradigm, aims to maxi-
mize the joint probabilities of all variables. The generative approach is particularly suited for
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tasks such as density estimation, generative modeling, and probabilistic reasoning. In contrast,
discriminative parameter learning [Gens and Domingos, 2012, Adel et al., 2015, Rashwan et al.,
2018] focuses on maximizing the conditional probabilities of a class variable given other vari-
ables, making it ideal for classification and regression tasks. In this paper, we adopt CCCP [Zhao
et al., 2016b], a generative parameter learning approach, as it admits multiplicative parameter
updates that provide a monotonic increase in the log-likelihood and lead to faster and more
stable convergence.

On the other hand, some works develop probabilistic circuits parameterized by neural net-
works. For instance, Ahmed et al. [2022] use an amortized neural network to output the weights
in circuits. To address the overfitting problem of large probabilistic circuits, Shih et al. [2021]
exploit the generalization ability of a small-scale neural network and employ it to generate the
parameters of a large circuit. Shao et al. [2022] aims to learn a probabilistic circuit to model
the conditional distribution of target variables given input variables. In their approach, a neural
network, conditioned on the input variables, is utilized to generate the circuit’s parameters. This
integration of neural networks enhances the expressiveness of probabilistic circuits and has been
used in neuro-symbolic integration [Ahmed et al., 2022, Manhaeve et al., 2018]. In this paper,
the circuit’s integration with the attribute recognition model can be seen as parameterizing the
input distributions of the circuit, instead of the weights of the circuit. The final predictions are
a result of utilizing the outputs of a circuit through the law of total probability.

Integration of Probabilistic Graphical Models Probabilistic graphical models (PGMs)
are frameworks that use graphs to express conditional dependencies between variables and
represent their joint probability distributions. With their expressiveness, PGMs can be in-
tegrated into the decision-making process to enhance models from various perspectives. Our
work demonstrates one approach to integrating PGMs, i.e., probabilistic circuits, to improve
the transparency and interpretability of a model’s predictive process. In contrast, Yang et al.
[2022], Gürel et al. [2021], Zhang et al. [2023], Kang et al. [2024] have focused on leveraging
PGMs integration to enhance the adversarial robustness of deep classification models.

Neuro-Symbolic Learning Neuro-symbolic learning integrates neural networks with sym-
bolic representations, combining data-driven learning with symbolic reasoning to leverage the
strengths of both. Variants of CBMs that embed inherent rules within the task predictor serve
has one exemplifying application of neuro-symbolic learning. Beyond CBMs, this neuro-symbolic
paradigm can be implemented in various other forms. One line of research focuses on designing
symbolic-based objective functions. For instance, Badreddine et al. [2022] propose objectives
that maximize the satisfiability of predefined symbolic rules over a neural network’s outputs.
Similarly, Xu et al. [2018], Ahmed et al. [2023] define objectives that maximize the probabilities
of generating outputs aligned with symbolic rules. These objectives can also function as regular-
ization terms alongside standard classification losses, encouraging a neural network to adhere to
specific rules by optimizing its parameters accordingly. Another line of research emphasizes the
design of model architectures. For example, Ahmed et al. [2022] introduce a semantic probabilis-
tic layer, a predictive layer designed for structured-output predictions, which can be seamlessly
integrated into neural networks to ensure predictions align with certain symbolic constraints.
Overall, these works ensure that learned models follow specific symbolic rules, either through
the design of objective functions or the modification of model architectures. However, while
these approaches enforce rule compliance, the explicit meaning of individual model components
often remains unclear, raising concerns about their transparency and interoperability.

Knowledge Compilation In the field of knowledge compilation [Darwiche and Marquis,
2002], previous studies have made efforts to compile PGMs [Choi et al., 2013, Chavira and Dar-
wiche, 2005] or logical formulas [Chavira and Darwiche, 2005, Darwiche, 2002, Pipatsrisawat and
Darwiche, 2008] into computationally efficient structures that support various inference tasks.
In this paper, the proposed knowledge-injected parameter learning approach adopts a simple
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compilation strategy that compiles a set of weighted AND rules into a two-layer probabilistic
circuit. Specifically, each product node corresponds to an individual AND rule, while the sum
node encodes the weights associated with these rules.

8 Conclusions
In this paper, we propose Neural Probabilistic Circuits (NPCs), a novel architecture that de-
composes the decision-making process into attribute recognition and logical reasoning, enabling
compositional and interpretable predictions. Experimental results across four image classifi-
cation datasets demonstrate that NPC delivers competitive performance when compared with
four baseline models. In addition, we conduct a series of ablation studies and observe the fol-
lowing findings: 1) Compared with individual binary concepts, utilizing attributes preserves
relational constraints, thus enhancing model performance. 2) Insufficient attributes compro-
mise NPC’s performance on downstream tasks, and the impact of excluding specific attributes
varies depending on their inherent properties. 3) For simple datasets, manually constructed cir-
cuits using the knowledge-injected approach are sufficient to result in competitive performance,
whereas data-driven circuits are more effective on complex datasets. 4) Joint optimization leads
to further improvements in the model performance. Furthermore, we demonstrate how the pro-
vided most probable explanations and counterfactual explanations offer attribute-level insights
into the model’s decision-making process, thereby enhancing the human’s understanding. Fi-
nally, we discuss the limitations and potential future research directions for NPCs from various
perspectives, providing insights for future improvements. Our work demonstrates the potential
of NPCs to enhance model interpretability and performance by integrating semantically mean-
ingful attributes with probabilistic circuits, offering actionable insights for future advancements
in interpretable machine learning through logical reasoning.
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Appendix A Joint Optimization
In this section, we provide additional algorithmic details for the proposed joint optimization
approach. The approach aims to jointly optimize the attribute recognition model and the circuit-
based task predictor in an NPC using the loss function defined in Equation (3). Specifically, we
employ the stochastic gradient descent algorithm to optimize the parameters of the attribute
recognition model, i.e., θ, and use the projected gradient descent algorithm to optimize the
parameters of the circuit, i.e., w, to ensure their positivity.

Optimizing θ Let ηA denote the learning rate for the attribute recognition model. The
parameters of the model at the (t+ 1)-th optimization step are as follows,

θ(t+1) = θ(t) + ηA ·
∑

(x,y)∈D

∂ log Prθ(t),w(t)(Y = y | X = x)

∂θ
.

Here, Prθ(t),w(t)(Y = y | X = x) is computed using Equation (1).

Optimizing w Let ηC denote the learning rate for the circuit. The d-th weight at the
(t+ 1)-th optimization step is as follows,

w
(t+1)
d = PR++

w
(t)
d + ηC ·

∑
(x,y)∈D

∂ log Prθ(t),w(t)(Y = y | X = x)

∂wd


= PR++

w
(t)
d + ηC ·

∑
(x,y)∈D

1

Prθ(t),w(t)(Y = y | X = x)

∂ Prθ(t),w(t)(Y = y | X = x)

∂wd

 .

Here, Prθ(t),w(t)(Y = y | X = x) is computed using Equation (1), and the gradient term is given
by,

∂ Prθ(t),w(t) (Y = y | X = x)

∂wd
=
∑
a1:K

K∏
k=1

Prθ(t) (Ak = ak | X = x) · ∂ Prw(t) (Y = y | A1:K = a1:K)

∂wd

=
∑
a1:K

K∏
k=1

Prθ(t) (Ak = ak | X = x) ·
fS
(
y, a1:K ;w(t)

)
fS
(
∅, a1:K ;w(t)

) · [∂ log fS
(
y, a1:K ;w(t)

)
∂wd

−
∂ log fS

(
∅, a1:K ;w(t)

)
∂wd

]
.

In particular,
∏K

k=1 Prθ(t) (Ak = ak | X = x) and
fS(y,a1:K ;w(t))
fS(∅,a1:K ;w(t))

are provided by the attribute

recognition model and the circuit, respectively.
∂ log fS(y,a1:K ;w(t))

∂wd
and

∂ log fS(∅,a1:K ;w(t))
∂wd

can be
computed recursively within a circuit Poon and Domingos [2011].

Appendix B Proof for Compositional Error
In this section, we present a detailed proof for Theorem 2. Throughout the proof, expressions
with parameters such as Prθ, Prw, and Prθ,w refer to probabilities learned by the models, while
those without parameters represent ground-truth probabilities.

ϵθ,w = EX

[
1

2

∑
y

∣∣∣∣Prθ,w
(Y = y | X)− Pr(Y = y | X)

∣∣∣∣
]
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|
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Thus, the upper bound of ϵθ,w is decomposed into two terms.
We derive the upper bound for the first term, i.e., Eq(5), as follows,

Eq(5) = EX

[
1

2

∑
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∣∣∣∣∣∏
k

Pr
θ
(Ak = ak | X)−

∏
k
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We derive the upper bound for the second term, i.e., Eq(6), as follows,
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(
Pr
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)
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∑
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y
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∑
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Pr
w
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(
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)
⩽

1

2

∑
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∑
y

∣∣∣Pr(Y = y,A1:K = a1:K)− Pr
w
(Y = y,A1:K = a1:K)

∣∣∣+ dTV

(
Pr
w
(Y,A1:K),Pr(Y,A1:K)

)
= 2dTV

(
Pr
w
(Y,A1:K),Pr(Y,A1:K)

)
= 2ϵw.

Combining results from Eq(5) and Eq(6), we have ϵθ,w ⩽ ϵθ + 2ϵw ⩽
∑

k ϵ
k
θ + 2ϵw.

Appendix C Experimental Setup
In this section, we provide additional details regarding the experimental setup.

Model Architectures To ensure a fair comparison with the various baselines, we con-
sistently adopt ResNet-34 [He et al., 2016] as the backbone for all methods. Specifically, in
CBM [Koh et al., 2020], the concept recognition model is based on ResNet-34, where the final
layer outputs concept probabilities. The task predictor is implemented as a linear layer that
takes these concept probabilities as input and outputs predicted class scores. For CEM [Zarlenga
et al., 2022], the first module is implemented using ResNet-34, with its final layer being the em-
bedding layer defined in [Zarlenga et al., 2022]. This embedding layer produces both concept
embeddings and concept probabilities. The subsequent task predictor uses only the concept
embeddings as input to produce the predicted class scores. In DCR [Barbiero et al., 2023], the
first module is identical to that of CEM, while the task predictor is the proposed deep concept
reasoner (DCR). This reasoner takes concept probabilities as input and outputs predicted class
scores, during which it leverages concept embeddings to formulate logical rules. For NPC, the
attribute recognition model is implemented using a multi-task learning framework. Specifically,
ResNet-34, without its original final layer, serves as the feature extractor to capture common
features across multiple attributes. For each attribute, a series of two linear layers acts as a
dedicated task head, outputting a probability vector corresponding to the attribute. The task
predictor in NPC is implemented as a probabilistic circuit, with detailed construction provided
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in Section 3.2.2.

Training Details For the baseline methods, training is performed with a batch size of 256
over 150 epochs. We use the SGD optimizer, configured with a learning rate of 0.01, a momentum
of 0.9, and a weight decay of 0.00004. During training, we reduce the learning rate by a factor
of 0.1 if the validation loss plateaus for 10 epochs. Additionally, the concept loss weight is set to
1 for CBM, CEM, and DCR, while the concept embedding size is configured to be 16 for both
CEM and DCR [Zarlenga et al., 2022]. For NPC, the training process consists of three stages.
In the first stage, the attribute recognition model is trained with a batch size of 256 over 150
epochs using the SGD optimizer. During training, we reduce the learning rate by a factor of
0.1 if the validation loss plateaus for 10 epochs. In the second stage, the circuit is learned and
optimized following the procedures described by Gens and Domingos [2013], Zhao et al. [2016b],
respectively. In the final stage, a learning rate of 0.01 is applied to the attribute recognition
model while the circuit remains frozen, which is empirically shown to yield faster training and
improved task performance. We run NPCs and all baseline models over five random seeds: 42,
52, 62, 72, and 82.

Counterfactual Explanations We adopt Algorithm 1 to generate CEs over 100 iterations.
The learning rate γ is set to 0.005 for MNIST-Addition, 0.01 for GTSRB, 0.1 for CelebA, and
0.05 for AwA2.

Appendix D Attribute Configurations
Table 5 provides an overview of the attributes used, along with their corresponding values, for
the four benchmark datasets. In MNIST-Addition and GTSRB, attributes are single-valued,
meaning each sample is associated with only one value per attribute. In contrast, CelebA and
AwA2 feature multi-valued attributes, allowing a sample to be associated with multiple values
for a single attribute. For example, an image from the “zebra” class has both “black” and “white”
as color attributes. Furthermore, attribute annotations in GTSRB, CelebA, and AwA2 are class-
wise, where each class of samples all corresponds to the same specific set of attribute values.
Conversely, in MNIST-Addition, samples from the same class may have different combinations
of attribute values. For instance, a sample from the class “8” may correspond to attribute values
such as “0, 8”, “1, 7”, or “8, 0”. Table 6 presents sample images from the four datasets.

Appendix E Human-Predefined Logical Rules
Human experience can be used to formulate specific logical rules for downstream tasks, represent-
ing valuable domain knowledge that can be integrated into models to enhance their reliability.
Here, we demonstrate a two-step procedure for constructing logical rules based on a given set
of observed samples D̄ = {(x, y, a1:K)}. 1) For each observed sample (x, y, a1:K), we establish
a corresponding logical rule of the form I(A1 = a1) ∧ . . . ∧ I(AK = aK) ∧ I(Y = y). 2) The
occurrences of the logical rules derived from all observed samples are then normalized to form a
weight for each rule, ensuring that the rules reflect the distribution of the observed data. Table 7
illustrates the rules constructed using training samples from the MNIST-Addition and GTSRB
datasets. In addition to the standardized procedure introduced above, humans can also leverage
their expertise to incorporate more diverse and task-specific rules beyond this form.
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Table 5: Attributes and their corresponding values for the four benchmark datasets.

Dataset Attribute Values

MNIST-Addition Number-First 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Number-Second 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

GTSRB

Color Blue, Red, White
Shape Circle, Diamond, Octagon, Triangle
Symbol Arrow-Consecutive-Turns, Arrow-Down-Left, Arrow-Down-

Right, Arrow-Left, Arrow-Right, Arrow-Roundabout, Arrow-
Up, Arrow-Up-and-Left, Arrow-Up-and-Right, Bicycle,
Bump, Car, Car-Truck, Car-Two, Deer, Exclamation-Mark,
Ice-or-Snow, Person, Person-Two, Road-Narrows, Roadworks,
Slash, Text, Traffic-Signal, Truck, Undefined

Text 100, 120, 20, 30, 50, 60, 70, 80, Stop, Undefined

CelebA

Mouth Mouth-Slightly-Open, None, Smiling
Face High-Cheekbones, None, Oval-Face
Cosmetic Heavy-Makeup, None, Wearing-Lipstick
Hair None, Wavy-Hair
Appearance Attractive, None

AwA2

Color Black, Blue, Brown, Gray, None, Orange, Red, White, Yellow
Surface Furry, Hairless, Patches, Spots, Stripes, Toughskin
Body Bipedal, Bulbous, Horns, Lean, Longleg, Longneck,

Quadrupedal, Tail, Tusks
Limb Claws, Flippers, Hands, Hooves, None, Pads, Paws

Table 6: Example images and their annotations from the four benchmark datasets. The
CelebA image is redacted in compliance with its terms of use.

Image Attribute Values
Number-First 3
Number-Second 5
Color Red
Shape Octagon
Symbol Text
Text Stop
Mouth Mouth-Slightly-Open, Smiling
Face High-Cheekbones
Cosmetic Heavy-Makeup, Wearing-Lipstick
Hair Wavy-Hair
Appearance Attractive
Color Black, White
Surface Furry, Stripes, Toughskin
Body Lean, Longleg, Longneck, Quadrupedal, Tail
Limb Hooves
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Table 7: Logical rules constructed using training samples from MNIST-Addition and GTSRB
datasets (Part 1).

Dataset Logical Rules
MNIST-Addition I(Number-First = a1)∧I(Number-Second = a2)∧I(Class = a1+a2), a1, a2 ∈

[0, 9]

GTSRB

I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 20) ∧
I(Class = regulatory–maximum-speed-limit-20)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 30) ∧
I(Class = regulatory–maximum-speed-limit-30)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 50) ∧
I(Class = regulatory–maximum-speed-limit-50)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 60) ∧
I(Class = regulatory–maximum-speed-limit-60)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 70) ∧
I(Class = regulatory–maximum-speed-limit-70)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 80) ∧
I(Class = regulatory–maximum-speed-limit-80)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 100) ∧
I(Class = regulatory–maximum-speed-limit-100)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 120) ∧
I(Class = regulatory–maximum-speed-limit-120)
I(Color = White) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text = 80) ∧
I(Class = regulatory–end-of-maximum-speed-limit-80)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Cat-Two) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–no-overtaking)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Car-Truck) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–no-overtaking-by-heavy-goods-vehicles)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Arrow-Up) ∧ I(Text =
Undefined) ∧ I(Class = warning–crossroads)
I(Color = White)∧ I(Shape = Diamond)∧ I(Symbol = Undefined)∧ I(Text =
Undefined) ∧ I(Class = regulatory–priority-road)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Undefined) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–yield)
I(Color = Red)∧ I(Shape = Octagon)∧ I(Symbol = Text)∧ I(Text = Stop)∧
I(Class = regulatory–stop)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Undefined) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–road-closed-to-vehicles)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Truck) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–no-heavy-goods-vehicles)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Slash) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–no-entry)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Exclamation-Mark) ∧
I(Text = Undefined) ∧ I(Class = warning–other-danger)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Arrow-Left) ∧ I(Text =
Undefined) ∧ I(Class = warning–curve-left)
I(Color = Red)∧ I(Shape = Triangle)∧ I(Symbol = Arrow-Right)∧ I(Text =
Undefined) ∧ I(Class = warning–curve-right)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol =
Arrow-Consecutive-Turns) ∧ I(Text = Undefined) ∧ I(Class =
warning–double-curve-first-left)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Bump) ∧ I(Text =
Undefined) ∧ I(Class = warning–uneven-road)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Car) ∧ I(Text =
Undefined) ∧ I(Class = warning–slippery-road-surface)
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Table 8: Logical rules constructed using training samples from MNIST-Addition and GTSRB
datasets (Part 2).

Dataset Logical Rules

GTSRB

I(Color = Red)∧I(Shape = Triangle)∧I(Symbol = Road-Narrows)∧I(Text =
Undefined) ∧ I(Class = warning–road-narrows-right)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Roadworks) ∧ I(Text =
Undefined) ∧ I(Class = warning–roadworks)
I(Color = Red)∧ I(Shape = Triangle)∧ I(Symbol = Traffic-Signal)∧ I(Text =
Undefined) ∧ I(Class = warning–traffic-signals)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Person) ∧ I(Text =
Undefined) ∧ I(Class = warning–pedestrians-crossing)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Person-Two) ∧ I(Text =
Undefined) ∧ I(Class = warning–children)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Bicycle) ∧ I(Text =
Undefined) ∧ I(Class = warning–bicycles-crossing)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Ice-or-Snow) ∧ I(Text =
Undefined) ∧ I(Class = warning–ice-or-snow)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Deer) ∧ I(Text =
Undefined) ∧ I(Class = warning–wild-animals)
I(Color = White) ∧ I(Shape = Circle) ∧ I(Symbol = Undefined) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–end-of-prohibition)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Right) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–turn-right-ahead)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Left) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–turn-left-ahead)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Up) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–go-straight)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Up-and-Right) ∧
I(Text = Undefined) ∧ I(Class = regulatory–go-straight-or-turn-right)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Up-and-Left) ∧
I(Text = Undefined) ∧ I(Class = regulatory–go-straight-or-turn-left)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Down-Right) ∧
I(Text = Undefined) ∧ I(Class = regulatory–keep-right)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Down-Left) ∧
I(Text = Undefined) ∧ I(Class = regulatory–keep-left)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Roundabout) ∧
I(Text = Undefined) ∧ I(Class = regulatory–roundabout)
I(Color = White) ∧ I(Shape = Circle) ∧ I(Symbol = Car-Two) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–end-of-no-overtaking)
I(Color = White) ∧ I(Shape = Circle) ∧ I(Symbol =
Car-Truck) ∧ I(Text = Undefined) ∧ I(Class =
regulatory–end-of-no-overtaking-by-heavy-goods-vehicles)
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Appendix F Model Explanations
Figure 8 illustrates examples for NPC(Knowledge) from the four benchmark datasets. Each
example comprises an image, the ground-truth labels for the class and attributes, the class pre-
dicted by NPC(Knowledge), and, lastly, the corresponding MPE. In these instances, NPC(Knowledge)
provides correct class predictions, and the MPEs are aligned with the ground-truth attribute
labels.

Figure 8: Examples from the four benchmark datasets. Each example includes an image,
the ground-truth class label, the ground-truth attribute labels, the NPC(Knowledge) class
prediction, and, lastly, the corresponding MPE. These examples illustrate MPEs that align
with the ground-truth attribute labels. The CelebA image is redacted in compliance with its
terms of use.

Figure 9 illustrates some examples for NPC(Knowledge) from the four benchmark datasets.
Each sample consists of an image, the attribute and class predictions, the generated CE, and,
lastly, the class prediction corrected by the CE. In these examples, NPC(Knowledge) incorrectly
predicts the class, while CEs effectively correct them by making minimal adjustments to the
attribute predictions.
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Figure 9: Examples from the four benchmark datasets. Each example includes an image,
the NPC(Knowledge) attribute and class predictions, the corresponding CE, and the class
prediction corrected by CE. These examples focus on CEs that successfully correct the class
predictions. For simplicity, both attribute predictions and CEs display only the most confident
value for each attribute. The CelebA image is redacted in compliance with its terms of use.
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