publications
Please refer to my Google Scholar for a complete publication list.
2024
- GRATH: Gradual Self-Truthifying for Large Language ModelsWeixin Chen, Dawn Song, and Bo LiICML 2024
Truthfulness is paramount for large language models (LLMs) as they are increasingly deployed in real-world applications. However, existing LLMs still struggle with generating truthful content, as evidenced by their modest performance on benchmarks like TruthfulQA. To address this issue, we propose GRAdual self-truTHifying (GRATH), a novel post-processing method to enhance truthfulness of LLMs. GRATH utilizes out-of-domain question prompts to generate pairwise truthfulness training data with each pair containing a question and its correct and incorrect answers, and then optimizes the model via direct preference optimization (DPO) to learn from the truthfulness difference between answer pairs. GRATH iteratively refines truthfulness data and updates the model, leading to a gradual improvement in model truthfulness in a self-supervised manner. Empirically, we evaluate GRATH using different 7B-LLMs and compare with LLMs with similar or even larger sizes on benchmark datasets. Our results show that GRATH effectively improves LLMs’ truthfulness without compromising other core capabilities. Notably, GRATH achieves state-of-the-art performance on TruthfulQA, with MC1 accuracy of 54.71% and MC2 accuracy of 69.10%, which even surpass those on 70B-LLMs.
2023
- TrojDiff: Trojan Attacks on Diffusion Models with Diverse TargetsWeixin Chen, Dawn Song, and Bo LiCVPR 2023
Diffusion models have achieved great success in a range of tasks, such as image synthesis and molecule design. As such successes hinge on large-scale training data collected from diverse sources, the trustworthiness of these collected data is hard to control or audit. In this work, we aim to explore the vulnerabilities of diffusion models under potential training data manipulations and try to answer: How hard is it to perform Trojan attacks on well-trained diffusion models? What are the adversarial targets that such Trojan attacks can achieve? To answer these questions, we propose an effective Trojan attack against diffusion models, \name, which optimizes the Trojan diffusion and generative processes during training. In particular, we design novel transitions during the Trojan diffusion process to diffuse adversarial targets into a biased Gaussian distribution and propose a new parameterization of the Trojan generative process that leads to an effective training objective for the attack. In addition, we consider three types of adversarial targets: the Trojaned diffusion models will always output instances belonging to a certain class from the in-domain distribution (In-D2D attack), out-of-domain distribution (Out-D2D-attack), and one specific instance (D2I attack). We evaluate \name on CIFAR-10 and CelebA datasets against both DDPM and DDIM diffusion models. We show that \name always achieves high attack performance under different adversarial targets using different types of triggers, while the performance in benign environments is preserved.
- DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT ModelsBoxin Wang, Weixin Chen, Hengzhi Pei, and 8 more authorsNeurIPS, Oral & Outstanding Paper Award 2023
Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications such as healthcare and finance – where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives – including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially because GPT-4 follows (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/.
2022
- Effective Backdoor Defense by Exploiting Sensitivity of Poisoned SamplesWeixin Chen, Baoyuan Wu, and Haoqian WangNeurIPS, Spotlight 2022
Poisoning-based backdoor attacks are serious threat for training deep models on data from untrustworthy sources. Given a backdoored model, we observe that the feature representations of poisoned samples with trigger are more sensitive to transformations than those of clean samples. It inspires us to design a simple sensitivity metric, called feature consistency towards transformations (FCT), to distinguish poisoned samples from clean samples in the untrustworthy training set. Moreover, we propose two effective backdoor defense methods. Built upon a sample-distinguishment module utilizing the FCT metric, the first method trains a secure model from scratch using a two-stage secure training module. And the second method removes backdoor from a backdoored model with a backdoor removal module which alternatively unlearns the distinguished poisoned samples and relearns the distinguished clean samples. Extensive results on three benchmark datasets demonstrate the superior defense performance against eight types of backdoor attacks, to state-of-the-art backdoor defenses.